Ataluren-time for a ‘no-nonsense’ approach to haematological malignancies

John A. Loudon
Correspondence: jon.uk1515@gmail.com
Wetherill Park Medical Centre, Sydney, Australia.

Abstract

This article outlines the novel application of Ataluren - a readthrough agent - for the management of a number of haematological malignancies. A broad spectrum of cancers may be managed by this approach from solid-based to blood-borne. The focus here is on representing the spectrum of leukaemias that may be targeted by this novel therapy - as assessed via genetic screening for nonsense mutations in tumour suppressor genes. Reversion of such mutations can be hypothesized to be of significant value in the treatment of adult and childhood nonsense mediated-leukaemias. These are relatively prevalent and suited to the readthrough therapy approach.

Keywords: Acute lymphoid leukaemia, acute myeloid leukaemia, ataluren, chemotherapy, chronic lymphoid leukaemia, chronic myeloid leukaemia, haematologic malignancies, lymphoma, myeloma, myelodysplastic syndrome, nonsense mutation, readthrough, tumour suppressor

To the editor

Haematological malignancy covers a group of cancers that affect blood, bone marrow and lymph nodes. Oftentimes all locations are affected simultaneously via their immune system interconnection. The cell of origin is both myeloid and lymphoid. Lymphomas, myeloma as well as lymphocytic leukaemias derive from lymphoid cells whereas myelogenous leukaemia, myelodysplastic and myeloproliferative conditions derive from the myeloid lineage.

Means of management of haematological malignancies include chemotherapy, radiotherapy, immunotherapy and, in selected cases, a bone marrow transplant. Treatment with Glivec targeting tyrosine kinase resulting from a specific genetic lesion in CML is proving to be a powerful therapy [1]. Another small molecular therapy is with Ataluren which specifically targets and reverts nonsense mutations – Premature Termination Codons – PTCs, by readthrough [2-4]. This low toxicity agent is being trialed for PTC-mediated cystic fibrosis and muscular dystrophy and can be also considered for use in PTC-mediated cancer and heart diseases [2-4]. Nonsense mutation reversion enables full length, potentially functional proteins, to be produced. The concept for cancer therapy is based on the observation that tumour suppressor genes exhibit a disproportionate number of nonsense mutational changes over oncogenes [4]. PTC mutations present in a whole variety of cancers from solid-based to haematological as can be gleaned from even a brief examination of COSMIC (Catalogue Of Somatic Mutations In Cancer, [4]).

Readthrough therapy of tumour suppressor PTCs in cancer has demonstrated ‘proof of concept’ for its benefits in cancer therapy in laboratory-based studies [2-4].

In terms of haematological malignancies the following highlight examples of tumour suppressors that may well be potentially excellent substrates for PTC-reversion and therefore could well prove highly efficacious in terms of a novel therapeutic approach. In AML a significant number of PTC-somatic mutations in the transcriptional corepressor gene BCORL1 from various cell lines have been found [5]. In another instance in regards AML, the tumour suppressor, PHF6, is found to be mutated [6]. Genomic lesions in PHF6 found in AML are both frameshift and nonsense mutations distributed through the gene. Another study [7] unveiled candidate tumour suppressor genes FOXO3 and PRDM1 in Natural Killer (NK)-cell neoplasms that were down-regulated in neoplastic samples. Nonsense mutations of PRDM1 that led to functional inactivation in one cell line and one clinical sample were determined.

The classical tumor suppressor, Tp53 has been examined in leukaemias and in CLL a significant number of PTCs in Tp53 are found [8]. In ALL cell line HPB a novel PTC at codon 124 of Tp53 has been disclosed adding weight to the direct involvement of PTC inactivation of this tumour suppressor in leukaemias [9]. In another study, the majority of Tp53 mutations in myeloma patients were found to be PTCs [10]. Presence of Tp53 mutations was associated with poor survival. Reversion of such Tp53 PTCs in myeloma could therefore prove to be of considerable therapeutic value.

Mutation of cell cycle regulator p16 (CDKN2A) by PTC has been implicated in the genesis of paediatric T-cell acute lymphoblastic leukaemia [11]. Another cell cycle regulator, CDKN1B, has a tumor suppressor role and a PTC mutation found with tumour-tissue only in a case of acute lymphomatous adult T-cell leukaemia suggests a causative role [12]. A nonsense mutation in one...
null
Diseases. Cardiovasc Drugs Ther 2013. | Article | PubMed

