Reduction of glucose and insulin concentrations during *in vitro* incubation of human whole blood at different temperatures

Sigrid Beitland1, 2 *, Helge Opdahl3, Trude Aspelin4, Peter A Torjesen5 and Torstein Lyberg4

*Correspondence: sigrid.beitland@medisin.uio.no

1Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Postboks 4956 Nydalen, N-0424 Oslo, Norway.
2Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Postboks 1072, Blindern, N-0316 Oslo, Norway.
3The Norwegian Center for NBC Medicine, Department of Acute Medicine, Division of Medicine, Oslo University Hospital, Postboks 4956 Nydalen, N-0424 Oslo, Norway.
4Department of Medical Biochemistry, Division of Diagnostics and Intervention, Oslo University Hospital, Postboks 4956 Nydalen, N-0424 Oslo, Norway.
5Hormone Laboratory, Department of Endocrinology, Division of Medicine, Oslo University Hospital, Postboks 4959 Nydalen, N-0424 Oslo, Norway.

Abstract

Background: Incubation of human whole blood at body temperature has been used in numerous studies without addition of glucose and insulin. The purpose of the study was to examine glucose concentration changes during *in vitro* incubation of human whole blood at different temperatures, and whether it was affected by addition of insulin and bacterial endotoxin. We also wanted to quantify changes in endogenous insulin concentrations during incubation for six hours at 37 °C.

Methods: Young, healthy and fasting males donated whole blood. Glucose concentrations were compared at baseline and after six hours incubation at 37 °C, 22 °C or 0 °C, in aliquots with and without addition of insulin and bacterial endotoxin. Glucose data are presented as mean (± 1 standard deviation). Endogenous insulin concentrations in aliquots without addition were measured at baseline and after six hours incubation at 37 °C, data are shown as median (interquartile range).

Results: Glucose concentration at baseline was 5.3 (± 0.6) mmol/L. After incubation for six hours at different temperatures, the glucose level at 37 °C was 1.0 (± 0.5) mmol/L (p<0.01), at 22 °C 3.0 (± 0.6) mmol/L (p<0.01), and at 0 °C 5.4 (± 0.7) mmol/L (p=0.95). The decline in glucose concentration seemed to be independent of addition of insulin and bacterial endotoxin. Endogenous insulin levels decreased from baseline 48 (36-94) pmol/L to 23 (18-27) pmol/L (p=0.03) during six hours incubation at 37 °C.

Conclusions: Glucose concentration was markedly reduced during *in vitro* incubation of whole blood from healthy volunteers for six hours at 37 °C and 22 °C, but was maintained at 0 °C. Endogenous insulin level after six hours incubation of whole blood at 37 °C was more than halved compared to baseline. During *in vitro* studies of glucose and/or insulin effects lasting for hours, measures must be undertaken to maintain stable glucose and/or insulin concentrations.

Keywords: Glucose, carbohydrate, insulin, hormone, human, *in vitro*, homeostasis

Background

Changes in blood glucose levels *in vivo* may reflect underlying disturbances in the metabolic homeostasis. Hyperglycaemia and/or insulin resistance has been shown to adversely affect clinical outcomes in both diabetic and non-diabetic patients [1]. This has been confirmed for several patient categories, including pregnant women [2], patients with diabetes mellitus [3], acute myocardial infarction [4] and acute stroke [5]. Elevated glucose concentration has been associated with unfavourable outcome in both patients undergoing coronary artery bypass grafting [6] and in intensive care unit (ICU) patients [7]. Stress-induced hyperglycaemia is also a clinical relevant problem; as it has been shown to occur in a significant number of patients intraoperatively, postoperatively and during ICU stay [8].

The effects of hyperglycaemia and/or insulin resistance have been extensively studied during the last decades, utilizing both *in vivo* [9,10] and *in vitro* [11,12] models. The two mentioned methodologies are principally different as several organs (liver [13], pancreas [14], muscles [15], endothelium [16] and adipose tissue [17]) as well as regulatory mechanisms (hypothalamic-pituitary-adrenal axis [18]) influences the concentration of glucose and/or insulin in the human body, but not in isolated blood samples. Glucose and/or insulin concentration changes in aliquots during incubation might therefore be different from glucose and/or insulin homeostasis *in vivo*.

There are publications showing decreased glucose concentration during storage of blood due to glycolysis that can be inhibited by addition of antiglycolytic agents [19,20,21]. The decreases in glucose concentration seem to be dependent on both time and temperature, and result in
an increased lactate concentration [22]. In contrast, insulin concentration was in a previous study stable for six hours in room temperature, and 72 hours at 4ºC [23]. The stability of endogenous glucose and insulin concentrations in human whole blood at different temperatures is not sufficiently quantified in previous studies; neither is the possible effect of insulin and endotoxin addition. The purpose of the study was to examine glucose concentration changes during in vitro incubation of human whole blood at body temperature, room temperature and placed on ice, and whether it was affected by addition of insulin and bacterial endotoxin. We also wanted to quantify changes in endogenous insulin concentrations during incubation for six hours at 37 ºC.

Methods

Study population

Healthy males aged from 27 to 44 years donated blood after an overnight fast. The Regional Committee for Medical Research Ethics approved the study, and all donors gave oral and written informed consent before participation.

Study design

Heparinised whole blood from each donor was divided in aliquots of 2 mL, whereof some were added insulin and *E. Coli* LPS. Aliquots were then incubated for 6 hours in an incubator (37 ºC), at room temperature (22 ºC) or placed on ice (0 ºC). In selected aliquots glucose concentrations was measured every hour, insulin levels at baseline and 6 hours, and lactate levels after 6 hours ([Table 1](#)).

Sampling and laboratory procedures

Venous blood from each donor was collected in tubes containing lithium-heparin 17 IU/mL blood (Vacutainer, Becton Dickinson, Plymouth, UK) and immediately placed on ice. The blood from each donor was pooled and subsequently aliquoted into polystyrene tubes with ventilation cap (Falcon, Becton Dickinson Labware, NJ, USA), each containing 2 mL blood. To selected aliquots insulin (final concentration 30 nmol/L, Actrapid, Novo Nordisk, Bagsvaerd, Denmark) and bacterial endotoxin (final concentration 1 µg/mL, *E.coli* LPS, serotype 026:B6, Difco Laboratories, Detroit, MI, USA) were added. The aliquots were incubated for 6 hours either in an incubator at 37 ºC (in an atmosphere of humidified 5 % CO2 and 95 % air) at room temperature (measured in blood as 22 ºC) or placed on ice (measured in blood as 0 ºC). Every hour the target temperature was confirmed in selected aliquots, and all tubes were agitated to obtain a homogenous solution.

Measurements of glucose, lactate and insulin concentrations

Glucose concentrations (mmol/L) were measured every hour during incubation at 37 ºC, 22 ºC and 0 ºC, at body temperature both in aliquots with and without addition of insulin and *E.Coli* LPS ([Table 1](#)). Glucose levels were measured utilizing Accu-Chek Sensor meter with Accu-Chek Inform test strips (Hofmann- La Roche Ltd, Basel, Switzerland).

Lactate concentrations (mmol/L) were measured in aliquots without additions after 6 hours incubation at 37 ºC, 22 ºC and 0 ºC, respectively ([Table 1](#)). Lactate levels were measured using Arkray Lactate Pro test meter with Lactate Pro test strips (Arkay Factory Inc, Shiga, Japan). The same person did all glucose and lactate measurements on each experimental day.

Endogenous insulin concentrations (pmol/L) were measured in aliquots without additions at baseline and after 6-hour incubation at 37 ºC ([Table 1](#)). Insulin measurements were performed in plasma after centrifugation at 2000 g for 12 minutes at 4 ºC and storage at – 70 ºC. Insulin was measured by a radioimmunoassay kit (Linco Research Inc, St. Charles, MO, USA), intra-assay coefficient of variation was<5 %.

(Table 1. Study design: Aliquots of whole blood with different additions and measurements.)

<table>
<thead>
<tr>
<th>Aliquot incubation procedure</th>
<th>Number (n=)</th>
<th>Insulin added (nmol/L)</th>
<th>E. Coli LPS added (µg/mL)</th>
<th>Glucose measured</th>
<th>Insulin measured</th>
<th>Lactate measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 ºC without additions</td>
<td>6</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>0 and 6 hours</td>
<td>No</td>
</tr>
<tr>
<td>37 ºC with additions</td>
<td>6</td>
<td>30</td>
<td>1</td>
<td>Every hour</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>37 ºC without additions</td>
<td>8</td>
<td>No</td>
<td>No</td>
<td>Every hour</td>
<td>No</td>
<td>6 hours</td>
</tr>
<tr>
<td>22 ºC without additions</td>
<td>8</td>
<td>No</td>
<td>No</td>
<td>Every hour</td>
<td>No</td>
<td>6 hours</td>
</tr>
<tr>
<td>0 ºC without additions</td>
<td>8</td>
<td>No</td>
<td>No</td>
<td>Every hour</td>
<td>No</td>
<td>6 hours</td>
</tr>
</tbody>
</table>

[Table 1. Study design: Aliquots of whole blood with different additions and measurements.]

Statistical analysis
Glucose and lactate data showed a normal distribution and are presented as mean (± 1 standard deviation (SD)). One-way ANOVA was used to analyze significant effects of time and/or temperature on glucose concentrations. Paired T-test was used to test the significance of a decline in glucose levels during incubation. Independent sample T-test was utilized to compare glucose concentrations at different temperatures and with different additions. Insulin data showed a skewed distribution and are presented as median (interquartile range (IQR)). Wilcoxon signed rank test was utilized to compare insulin concentrations at baseline and 6 hours. Statistical analyses was performed utilizing Statistical Package for Social Sciences (SPSS), version 15.0 (SPSS Inc., Chicago, IL, USA). Significance was accepted at p<0.05.

Results
Glucose concentrations
At 37 °C the blood glucose concentration in aliquots without additions declined from 5.3 (± 0.6) to 1.0 (± 0.5) mmol/L after 6 hours (p<0.01); the mean decline was 0.7 (± 0.2) mmol/L/hour, which was significant for each time interval. The decline in aliquots with additions was 0.6 (± 0.3) mmol/L/hour, which was significant for each time interval except for from 5 to 6 hours. Independent samples T-test revealed that the decline in glucose concentrations was not significantly affected by additions of LPS and insulin (Figure 1).

At 22 °C the blood glucose concentration declined from 5.3 (± 0.6) to 3.0 (± 0.6) mmol/L after 6 hours (p<0.01); mean decline was 0.4 (± 0.2) mmol/L/hour, which was significant for all time intervals except between 0 and 1 hour (Figure 1).

At 0 °C there was no detectable decline in glucose concentration during the incubation period as glucose level was 5.4 (± 0.7) mmol/L after 6 hours (p=0.95) (Figure 1).

Lactate concentrations
At 37 °C, lactate concentration was 8.2 (± 0.8) mmol/L after 6 hours incubation, at 22 °C 4.0 (± 0.3) mmol/L and at 0 °C 1.1 (± 0.2) mmol/L. Paired T-test revealed a significant difference in lactate level between 37 °C and 22 °C (p<0.01), and between 22 °C and 0 °C (p<0.01) (Table 2).

Insulin concentrations
Wilcoxon signed rank test revealed that endogenous insulin concentration after incubation at 37 °C for 6 hours was significantly reduced from baseline 48 (36-94) to 23 (18-27) pmol/L (p=0.03) (Figure 2).

Discussion
The main finding in this study was that glucose concentration was reduced to almost zero during 6 hours in vitro incubation of whole blood at body temperature. The decline in glucose concentration was independent of addition of insulin and bacterial endotoxin. At 22 °C glucose level was reduced by approximately 50 % of that at 37 °C after 6 hours, while at 0 °C glucose concentration was maintained. There was also 52 % lowered endogenous insulin concentration at 6 hours and 37 °C compared to baseline.

Glucolysis is known to cause falling glucose concentrations in blood samples after collection, and antiglycolytic agents can be added in order to maintain glucose levels [19,20,21]. Such antiglycolytic agents can interfere with cellular functions, and are therefore not used during studies of activated blood cells. Measurements of glucose concentrations during incubation of blood with different glucose additions have usually not been performed in previous studies [11,12], only the measured and/or calculated glucose level at baseline.
The studies have been stable at room temperature for 5 hours, the concentration during incubation. Insulin level at baseline concentration during incubation at body temperature, down at 37 ºC insulin have been reported to be bound to human erythrocytes at 37 ºC while the erythrocytes are unable to degrade insulin at room temperature, presumably due to reduced metabolic activity at this temperature.

This study contributes new knowledge regarding glucose and insulin degradation in whole blood at different temperatures. Even if our samples were examined ex vivo, the same rate of degradation by blood cells can be expected to occur in vivo. Under normal circumstances, surrounding tissues replenish blood glucose and insulin continuously. When the glucose and glycogen reserves are exhausted, also the blood cells participate in creation of a hypoglycaemic state with degradation rates calculated from our results to be close to 20 g glucose/24 hours, which is in agreement with data from others [29,30]. Based on our results, we suggest that former publications regarding effects of glucose and/or insulin during in vitro incubation should be interpreted with caution, as the reported glucose and/or insulin concentrations may not be representative for the entire incubation period.

To avoid hypoglycaemia we also suggest that glucose or other energy supply for cells should be added in future in vitro studies lasting for hours. Further, when glucose and/or insulin effects are studied during incubation, measures should be undertaken to maintain stable glucose and/or insulin concentrations.

A limitation was the use of only one glucose measurement method as the accuracy of different glucose measurement techniques has lately been elucidated [31]. The present study does not deal with the mechanisms behind decline in glucose and insulin concentrations, the respective contributions of erythrocyte gluolysis and leukocyte metabolism has to be addressed in future studies. The main goal of this investigation was to examine glucose dynamics in relation to a commonly used method for examining various aspects of leukocyte function after activation ex vivo, i.e., by incubating whole blood at body temperature (37 °C) for several hours. As addition of insulin and bacterial endotoxin did not affect the glucose metabolism at 37 ºC, it was unlikely to do so at lower temperatures. A comparison of insulin degradation at different temperatures could have been interesting, but the dynamics of insulin in blood per se was not focused upon in this investigation. Furthermore, the effect of exogenous glucose addition on glucose degradation during incubation should be addressed in future studies.

Conclusions
There is a considerable degradation of glucose in whole blood at body temperature. During in vitro incubation of whole blood from healthy volunteers, glucose concentration was markedly reduced, after 6 hours incubation down to almost zero. Reduction of glucose concentration seemed to be independent of addition of insulin and bacterial endotoxin. There was also significantly lowered endogenous insulin level after incubation of whole blood for 6 hours at 37 ºC.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HO and TL contributed to the conception and design of the study. SB recruited persons, performed the glucose and lactate analyses, and drafted the manuscript. TA was responsible for blood sample collection and handling, including the incubation procedure. PAT
was responsible for the insulin concentration measurements. SB, HO and TL analyzed and interpreted data, and all authors read and approved the final manuscript.

Acknowledgement

The authors would like to thank the volunteers who donated blood to the study.

Publication history

Received: 12-Dec-2012 Revised: 11-Jan-2013 Accepted: 21-Feb-2013 Published: 06-Mar-2013

References

Citation: