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Abstract 
Background: Prevalence of disease phenotype in clinical practice is often not given adequate importance during formulation, 
validation, and implementation of diagnostic tests in clinical research and development. After promising biomarkers have 
been identified as potential screening diagnostics, an important strategic question for optimal decision-making in clinical 
development of a therapeutic is when to choose an enrichment study design over the traditional all-comer randomized control 
trial design. 
Methods: A hypothetical example of a cholesterol lowering treatment is used to illustrate influences of key statistical criteria and 
clinical considerations for choosing study designs. Computer simulations demonstrate how results of such analyses can aid in 
deciding whether or not to choose enrichment study designs.
Results: This study shows how understanding of disease prevalence in practice, predictive values of diagnostic test, and pre-
specified establishment of a clinically meaningful minimum effectiveness all need to be integrated to insure clinical trial success 
and appropriate benefit to targeted patient subgroups. The most important statistical and clinical considerations were the 
anticipated effect size, phenotype prevalence, predictive values of diagnostics test, study power, and desired clinically meaningful 
difference. 
Conclusions: This study illustrates how successful clinical studies can be designed with careful planning and utilization of 
computer simulations to increase not only the probability of trial success but also to demonstrate to payers convincing evidence 
of clinical effectiveness. A six-step checklist is recommended as an evidence-based guideline to assist in decision-making on 
whether or not to adopt a diagnostics enriched clinical study design.
Keywords: Clinical trial, biomarker, screening diagnostics, clinical effectiveness, personalized healthcare, stratified medicine, 
computer simulation

© 2013 Deepak B. Khatry licensee Herbert Publications Ltd. This is an Open Access article distributed under the terms of Creative Commons Attribution License  
(http://creativecommons.org/licenses/by/3.0). This permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Many clinical trials fail because a “sufficiently appropriate” 
group of patients are not studied. Often, inclusion/exclusion 
criteria in conventional randomized clinical trials (RCT) do not 
optimally match patients to an investigational therapy’s specific 
mechanism of action (MoA). Thus, assessment of “efficacy,” a 
measure of a therapy’s “average” benefit to patients compared 
between standard-of-care (SoC) and investigational treatment 
arms, poses two types of risks.

The first risk, designated as “consumer risk,” is to individual 
patients. Because of heterogeneity in the clinical trial population, 
overall large efficacy signals may be produced by only a small 
subset of patients matching the therapy’s MoA. Thus, although 
a large proportion of study subjects may not be responding to 
an investigational therapy, the clinical trial, nevertheless, may 
show statistical significance and result in regulatory approval 
for marketing. In this latter scenario, there are potential ethical 
issues in the study itself because many participants with very 
low probability of benefit from the investigational therapy 
will have been unnecessarily exposed to potential harm. As 
the inclusion/exclusion criteria from pivotal trials determine 

product labels, many patients may later be prescribed the 
newly-approved therapy causing a large distortion in benefit/
harm or benefit/cost ratio in the real world.

The second risk, designated as “producer risk,” is to the spon-
sor. Because of heterogeneity in study sample and inferior 
concordance with therapy’s MoA, the ratio of efficacy signal 
to background noise may be greatly diminished, thereby 
increasing risk of trial failure. Phase II success rates are lower 
than at any other phase of development, as evidenced by 
decline in success rates for new development projects from 
28% in 2006-2007 to 18% in 2008-2009 [1]. An estimate of 
likelihood of a drug successfully progressing through Phase 
III to launch is 50% [2]. Such high attrition rates in late-stage 
drug development result in large financial costs to industry 
from both lost revenue and missed opportunity cost of not 
pursuing alternate drug candidates or targets.

Physicians, patients, and increasingly payers, who control 
reimbursement decisions, prefer clinical “effectiveness” over 

“efficacy” (see reference [3], for a regulatory perspective). Clinical 
effectiveness measures how well a treatment works in patients 
in real-world conditions. Ideally, quantification of effectiveness 

Journal of
Medical Statistics and Informatics
ISSN 2053-7662

http://www.hoajonline.com
mailto:khatryd%40medimmune.com?subject=
http://creativecommons.org/licenses/by/3.0
http://www.hoajonline.com/medicalstat
http://www.hoajonline.com/medicalstat


Deepak B. Khatry Journal of Medical Statistics and Informatics 2013, 
http://www.hoajonline.com/journals/pdf/2053-7662-1-4.pdf

2

doi: 10.7243/2053-7662-1-4

should include proportion of responders and not just average 
response of a group. Demonstration of effectiveness will 
generally demonstrate efficacy, but the reverse may not hold 
true. A study population must exhibit sufficient homogeneity 
of response to a treatment to demonstrate effectiveness. Thus, 
a screening diagnostics (DX) with an optimum threshold for 
accurate patient classification may become necessary for 
assuring higher homogeneity. This paper focuses on key 
interrelated statistical and clinical considerations for aiding 
decisions on when to adopt a DX-enriched study design. Impor-
tant among these are the anticipated effect size, prevalence 
of phenotype, diagnostic test accuracy, study power, and 
clinically meaningful desired difference. Simulations of a 
hypothetical example of a cholesterol-lowering drug are used 
to demonstrate how well-planned computer simulations can 
aid in deciding when to adopt DX-enriched study designs.

Methods
Diagnostic accuracy and probability
Diagnostic tests are undertaken to determine the presence 
or absence of a phenotype, and this is carried out by making 
a decision that the condition is or is not present based upon 
test results [4,5]. In medical decision-making dependent on 
diagnostic test results, conditional probabilities are condi-
tioned on the outcome rather than the “unknown” truth. Such 
probabilities are the “inverse probabilities,” also known as 

“Bayesian” probabilities. It is important to understand the 
direction of a conditional probability as to whether the dire-
ction is from truth to outcome or in the reverse direction [4]. 
Confusion on the directionality of the conditional probability 
can misinform an understanding of probabilities that affect 
clinical decision-making. For the purpose of planning and 
designing a DX-enrichment study, positive predictive value 
(PPV) is the most important diagnostic measure of accuracy 
because it directly impacts probability of trial success 
(based on statistical significance) as well as the likelihood of 
demonstrating a pre-specified minimal clinically meaningful 
difference. The predictive values of a DX can be estimated 
from test sensitivity (SN), specificity (SP), and pre-test or prior 
probability (PP) using the following equations [6]:

  PPV = SN x PP/SN x PP + (1–SP) x (1–PP) .............(1)

  NPV = SP x (1–PP)/SP x (1–PP) + (1–SN) x PP  ...........(2)

Because the inverse probabilities are calculated from the truth- 
conditional probabilities and the PP, it is important to conduct 
sensitivity analyses using a plausible range of pre-test probab-
ilities when calculating PPV. If a plausible range of pre-test 
probabilities are unknown, but the SN and SP of a DX-test is 
known with sufficient confidence, the number of test +ves 
and test -ves from a pilot study or retrospective data can be 
used with a flat Beta prior in a simulated Markov process 
with a continuous state space to estimate PP and Bayesian 

confidence intervals (see reference [7], for an example with 
R programming codes). The PP can also be approximated 
using assumed SN and SP of the diagnostic test and observed 
proportion of DX+ve (PDXP) in a pilot or retrospective study 
using the following equation:

    PP = (PDXP+SP -1)/(SN+SP -1)  ...............(3)

Based on the normal approximation to the binomial distri-
bution, the traditional 95% confidence interval for PDXP can 
be calculated and substituted into Equation 3 to obtain 95% 
confidence interval for PP. However, as cautioned in [7], abs-
urd estimates of prevalence can sometimes result when using 
Equation 3. The Bayesian method is robust against such absurd 
estimates and may be preferable, especially considering 
ready availability of open-access statistical software such as R. 
Representative values from inside the confidence interval can 
subsequently be used for sensitivity analyses in downstream 
simulations of PPV, and to examine the effects of DX accuracy 
on clinically meaningful difference. 

Illustrative example
A hypothetical example of an investigational cholesterol- 
lowering drug that selectively benefits a targeted sub-group of 
patients at risk of heart disease is utilized. The example is drawn 
from an actual Dutch study of cholesterol-lowering therapy 
as described in [8]. In the Dutch study, familial hypercho 
lesterolemia (FH) was diagnosed through genetic cascade 
screening, and the study patients were treated with a chole-
sterol-lowering drug. After analysis of the study data, it was 
observed that mean low-density lipoprotein cholesterol 
(LDL-C) decreased to 124 (± 43) mg/dL, which was statistically 
significant. However, only 22% of study subjects achieved 
the LDL-C target level of ≤97 mg/dL recommended in Dutch 
guidelines. Although questions have been raised about the 
effectiveness of genetic testing for FH [9,10], it is assumed in 
this example that a novel predictive DX has been developed for 
selecting likely responders to the investigational lipid lowering 
treatment. The DX will be utilized to enrich the clinical trial 
population to demonstrate both clinical “effectiveness” and 

“efficacy” of the new investigational therapy. In this paper, mock 
simulated studies will be utilized with 10% above the Dutch 
recommended guideline of ≤97 mg/dL of LDL-C (i.e., ≤107 mg/
dL) as the reduced post-treatment target for demonstrating 
clinical effectiveness. This target level is on the low side of the 
range for “near ideal” category (100-129 mg/dL) published 
by the Mayo Clinic [11]. Analyses will incorporate simulation 
and application of formal statistical tests. First, relationships 
will be examined between various measures of diagnostic 
accuracy (SN, SP, PPV, NPV, and overall accuracy) (Table 1). 
Subsequently, relationships among predictive values of DX 
tests, effect size, study power, and their contributions to go/
no go decisions will be examined (Figures 1 and 2). The goal 
is to not only achieve statistical significance, but also attain 
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Accuracy (%) DX Measure Prevalence, ie Pre-Test Probability (%)

 -- 30 40 50 60 70
10 SP 7.1 (4.7) 8.3 (5.5) 10.0 (6.6) 12.5 (8.3) 16.7 (11.1)

SN 16.7 (11.1) 12.5 (8.3) 10.0 (6.6) 8.3 (5.5) 7.1 (4.7)

PPV 6.8 (4.1) 7.9 (4.7) 9.3 (5.5) 11.5 (6.6) 15.1 (8.2)

NPV 15.1 (8.2) 11.5 (6.6) 9.3 (5.5) 7.9 (4.7) 6.8 (4.1)
20 SP 14.3 (8.9) 16.7 (10.3) 20.0 (12.4) 25.0 (15.5) 33.3 (20.7)

SN 33.3 (20.7) 25.0 (15.5) 20.0 (12.4) 16.7 (10.3) 14.3 (8.9)

PPV 13.2 (6.8) 15.2 (7.6) 18.0 (8.6) 22.2 (9.8) 29.4 (11.1)

NPV 29.4 (11.1) 22.2 (9.8) 18.0 (8.6) 15.2 (7.6) 13.2 (6.8)
30 SP 21.4 (13.0) 25.0 (15.2) 30.0 (18.2) 37.5 (22.7) 50.0 (30.3)

SN 50.0 (30.3) 37.5 (22.7) 30.0 (18.2) 25.0 (15.2) 21.4 (13.0)

PPV 19.3 (8.7) 22.3 (9.5) 26.6 (10.3) 33.4 (10.8) 50.0 (0.0)

NPV 50.0 (0.0) 33.4 (10.8) 26.6 (10.3) 22.3 (9.5) 19.3 (8.7)
40 SP 35.7 (13.0) 33.3 (20.0) 40.0 (24.0) 50.0 (30.0) 50.0 (30.3)

SN 50.0 (30.3) 50.0 (30.0) 40.0 (24.0) 33.3 (20.0) 35.7 (13.0)

PPV 22.3 (9.5) 29.6 (10.4) 35.9 (10.4) 50.0 (0.0) 66.6 (10.8)

NPV 66.6 (10.8) 50.0 (0.0) 35.9 (10.4) 29.6 (10.4) 22.3 (9.5)
50 SP 50.0 (13.0) 50.0 (20.0) 50.0 (29.7) 50.0 (30.0) 50.0 (30.3)

SN 50.0 (30.3) 50.0 (30.0) 50.0 (29.7) 50.0 (20.0) 50.0 (13.0)

PPV 26.6 (10.3) 35.9 (10.4) 50.0 (0.0) 64.1 (10.4) 73.4 (10.3)

NPV 73.4 (10.3) 64.1 (10.4) 50.0 (0.0) 35.9 (10.4) 26.6 (10.3)
60 SP 64.3 (13.0) 66.7 (20.0) 60.0 (24.0) 50.0 (29.9) 50.0 (30.3)

SN 50.0 (30.3) 50.0 (29.9) 60.0 (24.0) 66.7 (20.0) 64.3 (13.0)

PPV 33.4 (10.8) 50.0 (0.0) 64.1 (10.4) 70.4 (10.4) 77.7 (9.5)

NPV 77.7 (9.5) 70.4 (10.4) 64.1 (10.4) 50.0 (0.0) 33.4 (10.8)
70 SP 78.6 (13.0) 75.0 (15.2) 70.0 (18.2) 62.5 (22.7) 50.0 (30.3)

SN 50.0 (30.3) 62.5 (22.7) 70.0 (18.2) 75.0 (15.2) 78.6 (13.0)

PPV 50.0 (0.0) 66.6 (10.8) 73.4 (10.3) 77.7 (9.5) 80.7 (8.7)

NPV 80.7 (8.7) 77.7 (9.5) 73.4 (10.3) 66.6 (10.8) 50.0 (0.0)
80 SP 85.7 (8.9) 83.3 (10.3) 80.0 (12.4) 75.0 (15.5) 66.7 (20.7)

SN 66.7 (20.7) 75.0 (15.5) 80.0 (12.4) 83.3 (10.3) 85.7 (8.9)

PPV 70.6 (11.1) 77.8 (9.8) 82.0 (8.6) 84.8 (7.6) 86.8 (6.8)

NPV 86.8 (6.8) 84.8 (7.6) 82.0 (8.6) 77.8 (9.8) 70.6 (11.1)
90 SP 92.9 (4.7) 91.7 (5.5) 90.0 (6.6) 87.5 (8.3) 83.3 (11.1)

SN 83.3 (11.1) 87.5 (8.3) 90.0 (6.6) 91.7 (5.5) 92.9 (4.7)

PPV 84.9 (8.2) 88.5 (6.6) 90.7 (5.5) 92.1 (4.7) 93.2 (4.1)

NPV 93.2 (4.1) 92.1 (47) 90.7 (5.5) 88.5 (6.6) 84.9 (8.2)

Table 1. Relationship of different measures of diagnostic accuracy with pre-diagnostic test probability 
(values are means and standard deviations obtained from simulations).

cholesterol reduction to a hypothetical mean target threshold 
of ≤107 mg/dL LDL-C in the treatment arm. Thus, the interest 
is in assessing what level of PPV will be necessary to achieve 
this target, and what will be the associated study power for 
demonstrating statistical significance to help decide if a DX- 
enriched clinical trial should be undertaken.

Simulation
Key features of the simulations and the statistical methods/tests 
used in this study are shown inside the text box. Simulation 
was carried out to generate artificial data representing 
prevalence of phenotype in 10% increments. SYSTAT (v. 11.0) 
and the open access statistical software R (v. 2.10.1) were 
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Figure 1. Relationship among study power, PPV, and effect 
size [n=82, power=80%, α=0.05, and reference effect size=0.62 
(corresponding to treatment mean=97 mg/dL, SoC 
mean=124 mg/dL, pooled standard deviation=43 mg/dL)].

Figure 2. Relationship of clinical effectiveness, different effect 
sizes (each with correctly specified sample size), and PPV.

used for data analyses.

Results
Simulation results and observed relationships between the 
different measures of diagnostic accuracy and pre-diagnostic 
probabilities are summarized in (Table 1). The shaded cells with 

bold numbers in the table indicate thresholds of PPVs below 
which choosing a DX-enriched study design will not make 
sense because the posterior probabilities offer no advantage 
over the pre-test probabilities.

(Table 1) shows that higher overall accuracy of a DX is need 
ed for lower prevalence in order to cross the potential minimal 
utility threshold of PPV (a PPV of 50% is equivalent to tossing 
an unbiased coin when pre-test probability is 50%). Thus, for 
investment in a DX-enriched study design, an acceptable target 
PPV will need to be predetermined taking into consideration 
the assumed pre-test probability and level of willingness of the 
sponsor to risk trial failure. As an example, a PPV threshold of 
70% may constitute such a target deemed to be acceptable. 
Thus, in order to cross a 70% PPV threshold, an overall DX 
accuracy of 80, 80, 70, 60, and 50% are required for prevalence 
of 30, 40, 50, 60, and 70%, respectively (Table 1).

(Figure 1) demonstrates relationships among study power, 
PPV, and different effect sizes for a fixed sample size (n=82). 
As effect size decreases from the reference effect size, study 
power obtained from gains in diagnostic accuracy (PPV) 
declines rapidly, exhibiting progressively lower relative impact 
of PPV on the study power (bottom three lines in Figure 1). 
However, for an underestimated or a correctly specified effect 
size, there is rapid gain in study power as PPV increases (top 
two lines in Figure 1). Thus, as per expectation, a study’s power 
is affected by both the sample size and the PPV of a DX. 

However, having sufficient study power by correct specifi-
cation of sample size does not guarantee demonstration of 
clinical effectiveness. This point was previously emphasized 
in reference [12], in which the authors caution and illustrate 
that even large changes in statistical significance levels can 
correspond to small, non-significant changes in the underlying 
quantities of practical interest. Once a sample size has been 
adequately specified for an unknown true effect size (i.e., the 
influence of variance has been sufficiently accounted for) to 
achieve the desired study power, clinical effectiveness will 
then depend upon the PPV of a DX-test as shown by the steep 
negative slope of the superimposed lines representing the 
different effect sizes in (Figure 2) (the lines for the different 
effect sizes lie on top of one another because sample sizes 
have been adjusted for differences in variances). Thus, a PPV 
of 70% (0.7 on the X-axis) would insure that a DX +ve study 
should result in expected mean LDL-C level of 105 mg/dL 
(which satisfies the clinical effectiveness target of less than 
107 mg/dL on the Y-axis), irrespective of the effect size. Note 
that even though the clinical effectiveness target is expected 
to be met, the study power would only be ~ 60% (Figure 1, 
for the reference effect size of 0.62), not 80%. This difference 
in study power arises because the sample size for the 80% 
power was calculated assuming a PPV of 100%, not 70%. A 
PPV of 20% on (Figure 2). would be expected to reduce LDL-C 
level to only an expected mean of 119 mg/dL, a number 
significantly above the desired target LDL-C level set for 
demonstrating clinical effectiveness, even when statistical 

∙ Control arm: mean LDL-C = 124 (± 43) mg/dL (n=5000).
∙ Treatment arm: mean LDL-C = 97 (± 43) mg/dL (n=5000).
∙ Effect size (the difference between control and treatment 
   arms divided by the pooled standard deviation): 0.2, 0.31,  
   0.5, 0.62 (reference, from the Dutch Study), and 0.8.
∙ PPV: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
  0.95, 1.0 (1.0 = perfect DX accuracy),
∙ Statistical test and other parameters: two-sample t-test, 
  α=0.05, β=0.2, n=2000 bootstrap samples.
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significance is attained. Of course, a PPV of 20% will likely fail 
to attain statistical significance because of low study power, 
but a consumer risk does exist, nevertheless.

Discussion
As drug costs are escalating with an increase in development 
costs nearing $2 billion for each marketed drug, success rate 
has declined from ~12% to ~7% [13]. “Fail fast, fail cheap,” 

“shots on goal,” the use of biomarkers, and changing gover-
nance and organizational models have been some of the 
strategies adopted by industry since 2001 [14]. As the science 
of individualized medicine matures, empiricism and the 
probabilistic underpinnings of medical practice are increasingly 
replaced by specific targeted diagnosis and treatments 
with mechanism-based deterministic precision [13]. Drug 
developers must now provide evidence of differentiation 
and clinical value in order to convince major payers to offer 
reimbursement for new medicines at a fair price [15,16]. Both 
public and private payers in rich and emerging economies are 
becoming increasingly interested in using evidence to inform 
health-care resource allocation decisions and for preferential 
coverage in health plans [17,18]. One way to achieve and 
demonstrate such evidence is through practical enrichment, 
i.e., seeking to reduce noise (variability of measurement) and 
minimizing heterogeneity of patients in clinical trials [19]. 
A sufficiently accurate screening diagnostics, as illustrated 
in this paper, can be an invaluable tool for such a purpose. 
Ideally, relevant diagnostics should be evaluated during drug 
development and be available for use in efficacy trials [20]. 
So what should such an evaluation encompass? Sensitivity 
and specificity of a diagnostic test estimate the probability 
of a positive or negative test result when the gold standard 
(truth-surrogate outcome) is known. These two commonly 
reported diagnostic measures are useful in selecting a test 
from among different competing tests. Positive and negative 
predictive values, on the other hand, measure the probability 
of making a correct choice from a test result. These latter two 
diagnostic measures are useful in clinical decision making and 
in patient screening for enrolment in clinical trials. Sensitivity 
infers the probability of a +ve DX test, given that the patient 
has the disease or phenotype of interest. With a test result in 
hand, however, the clinician wants to know the probability 
that the patient has the specified disease or phenotype given 
a +ve or –ve DX test. As predictive values are a function of 
both the sensitivity and specificity of the DX test and the 
pre-test probability, clinical decision making or patient 
selection for clinical trials should pay significant attention 
to making sure the pre-test probabilities are not seriously 
over- or under-estimated. Test sensitivities and specificities 
can only be correctly interpreted for decision-making when 
the unknown true pre-test probabilities have been estimated 
reasonably accurately. At low pre-test probabilities, diagnostic 
utility is often limited by inadequate accuracy of tests. As pre-
diagnostic probability decreases further away from 50%, the 

DX-test will need to be increasingly more accurate in sensitivity 
while possessing increasingly higher specificity. At high 
pre-test probabilities, diagnostic tests may not be necessary 
for designing clinical trials because the study population 
will already be relatively homogenous. Any marginal gain 
in enrichment by using a diagnostics in such a situation 
may be inefficient from a time and cost perspective. Honig 
[21] expresses the lack of importance given to disease/trait 
prevalence in determining the predictive value, clinical utility, 
cost-effectiveness, and generalizability of screening, testing, 
or enrichment in published papers that discuss diagnostic 
measures, particularly those overtly emphasizing only 
sensitivity and specificity. Diagnostic tests will have highest 
utility in clinical trial designs when pre-test probabilities are 
in the mid-range [21,22].

Thus, if the success of a clinical trial depends on sufficient 
enrichment, then both diagnostic accuracy and pre-test 
probability of a disease or phenotype are important criteria. 
If the true prevalence of a disease or genetic trait of interest 
is low, the PPV of the test/screen also will be correspondingly 
low and, even with high sensitivity and specificity, the majority 
of positive tests will tend to be falsely positive [21,22]. A 
sponsor will want to invest in a clinical trial only if there is 
sufficient confidence in the trial’s probability of success. 
Although pre-diagnostic probability can be biased toward 
trial success by altering a study’s inclusion/exclusion criteria, 
such a manipulation often comes with a trade-off cost in 
higher rate of false negatives (i.e., higher screen failure rate 
and correspondingly smaller potential market size). Therefore, 
from a purely DX-enrichment viewpoint, positive predictive 
value must be recognized as the “primary” diagnostic measure 
of interest because it directly impacts the probability of 
success of a clinical trial. Effect size affects the power of a 
study if a study’s signal/noise (S/N) ratio differs significantly 
from the initially assumed S/N used in calculating the sample 
size. Clinical trials designed with prognostic or predictive 
biomarkers as screening diagnostics can greatly increase 
the efficiency of trials because enrichment positively affects 
the S/N ratio and, consequently, leads to smaller sample size 
requirements for demonstrating both clinical efficacy and 
effectiveness. According to a recently published guidance 
document of the Food and Drug Administration (FDA) on 
clinical trial enrichment strategies, “the strategy can be 
particularly useful for early effectiveness studies because it can 
provide clinical proof of concept and contribute to selection of 
appropriate doses for later studies” [23]. The Agency further 
states, “The decision to use an enrichment design is largely 
left to the sponsor of the investigation, but like the entire 
research and clinical communities, FDA is very interested in 
targeting treatments to the people who can benefit from 
them (i.e., individualization).”

Conclusion
In conclusion, the following six-step checklist is recommended 
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as a generic evidence-based guideline to aid decision-making 
on whether or not to adopt a DX-enriched clinical study design: 
(1) be reasonably confident that assumption of prevalence 
is not erroneous, (2) insure that DX yields a sufficiently high 
PPV, (3) insure that the expected PPV will likely result in a pre-
specified minimum clinically meaningful average value for the 
study’s primary endpoint, (4) seek assurance that assumption 
of effect size is not faulty in order to insure sufficient power 
from the planned study sample size, (5) conduct simulations 
to assess effects of plausible under-or over-estimations of 
the critical assumptions (i.e., conduct sensitivity analyses), 
and lastly (6) make go/no go decisions based upon careful 
evaluation of assumptions and synthesis of simulation 
results from all preceding five steps in conjunction with risk 
tolerance for clinical trial failure deemed to be acceptable 
by the sponsor. As only statistical significance is affected by 
a study’s sample size, it is especially important to pre-specify 
and satisfy a minimum clinically-meaningful average trea-
tment difference in both DX-enriched and RCT clinical 
studies. Adherence to the above guidelines will increase the 
likelihood of not only successful demonstration of efficacy, 
safety and benefit-risk management to obtain regulatory 
approval, but also the achievement of what Honig [24] has 
characterized in a recent editorial as the “fourth hurdle” to 
successful commercialization of biopharmaceutical products-- 
increased likelihood of reimbursement.
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