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Abstract
Background: Risk Difference (RD) is becoming the measure of choice for estimating effect size in 
antimalarial drug efficacy trials. Calculating RD using binomial regression is prone to model non-
convergence. Cheung’s modified ordinary least squares (OLS) method is a proven technique for handling 
non-convergence when estimating RD. Other promising methods include the Poison, Additive Binomial 
Regression and binary regression models fitted using the statistical package R. (Deddens’) Copy 
method that was primarily developed to overcome non-convergence of log-binomial regression models 
when estimating risk ratios is another potential method. Simulations were conducted to compare the 
performance of the Copy method against four alternatives (Cheung’s modified OLS method, the Additive 
Binomial Regression Model fitted with the blm algorithm, the binary regression model fitted with the 
glm2 algorithm, and the Poisson model with identity link and robust standard errors fitted with the glm 
algorithm) for obtaining RD estimates when a binomial model fails to converge. 
Methods: We computed estimates of efficiency and bias with treatment arm efficacies of (a) 60% vs. 85%, (b) 
95% vs. 90%, (iii) 95% vs. 98% using simulation studies. A total of 5,000 datasets were simulated under each 
of these three scenarios.
Results: The modified OLS method and the binary regression model fitted using the glm2 algorithm in 
R provided unbiased, efficient estimates of RD across all assessed scenarios. In contrast, the Copy method 
yielded biased estimates of RD even when 100% convergence was achieved. The Poisson and Additive 
Binomial Regression models had 100% and almost 100% convergence rates respectively, but both produced 
very slightly biased RD estimates.
Conclusion: The Copy method is not suitable for estimating RD when binomial regression model fitting 
fails to converge. Cheung’s modified OLS or the binary regression model fitted using the glm2 algorithm 
in R should be the method of choice to overcome non-convergence with binomial models for calculating 
adjusted RD estimates.
Keywords: Copy method, risk difference, binary outcome, binomial model, Cheung’s modified least 
squares estimation, simulation, bias
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Introduction
The most common measures for comparing binary outcomes 

between two groups include: a risk ratio (RR), an Odds Ratio 
(OR) and a risk difference (RD).
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The risk ratio (RR) is an appropriate summary statistic in cohort 
studies where study participants are selected on the basis of 
their exposure to the risk factor of interest. However, the risk 
difference provides an appealing, informative alternative ef-
fect estimate and increasingly is being used in randomized 
controlled trials.

One pitfall of the RR is the possibility of incorrect inter-
pretation. For example, the risk ratio for the outcome being 
a success is not the inverse of the risk ratio for the (same) 
outcome being a failure [1], although the two ratios are 
complementary and should ideally lead to the same conclu-
sion. Of particular concern is that, when risk ratios are used 
in Randomized Controlled Equivalence Trials, evidence of 
equivalence in the failure rates of two treatments does not 
necessarily imply evidence of equivalence in the success 
rates of the same two treatments [2]. The same may be true 
for non-inferiority studies also. A risk difference, on the other 
hand, has the same value irrespective of whether success 
or failure is modelled, so is a preferable headline summary 
statistic if only on the grounds of ease, and consistency, of 
interpretation.

Furthermore, when the failure levels are very low in both 
treatment arms, modeling treatment failure may result in a 
large risk ratio that represents only a small failure risk differ-
ence. For example, consider a situation where the treatment 
failure rates for treatment A and B are 1% and 4% respectively. 
The treatment failure risk ratio (B to A) is 4; in simple terms, 
individuals receiving treatment B are 4 times more likely to 
experience a treatment failure than those receiving treat-
ment A. Even if the sample size is sufficient for this RR to be 
statistically significantly different from the null hypothesis 
value of 1, it only reflects a RD of 3%. Of course, if “failure” is 
death, this may be a fair and sensible indication of the rela-
tive efficacy of the treatments – but in many contexts, for 
example if failure is incomplete resolution of the symptoms 
associated with the common cold within a pre-specified time 
period, the real clinical significance of this difference may 
be considered to be small or even negligible. In this latter 
scenario, a RD is probably a more informative measure of 
relative treatment efficacy.

Two final considerations that may be important when se-
lecting the most appropriate summary statistic for indicating 
the relative sizes of treatment effects: the confidence intervals 
(CIs) for RRs are not symmetric about the estimate (except on 
the log scale), which may serve to ‘exaggerate’ true relative 
effect; while many researchers continue to favor reporting 
odds ratios (ORs) in prevalence studies on the basis that 
many previous studies of a similar nature to their own have 
reported this statistic, it is a simple matter of fact that the 
interpretation of an OR is difficult for many researchers [3].

In summary, risk difference (RD) is often the effect measure 
of choice, particularly for malaria treatment efficacy studies, 
the focus of this paper. The RD has the considerable advantage 
of being much easier to interpret than the most commonly 

used alternatives, RR and OR, and produces the same value 
irrespective of whether success or failure is measured so is 
flexible to use in practice. Unfortunately, however, the serious 
practical problems that can be experienced when calculat-
ing RD values can exceed these advantages and either RR or 
(most usually) OR values are calculated.

Technically, the most straightforward way of calculating 
risk differences is by using standard binomial regression 
methods, but these are prone to convergence failure – and 
these model non-convergence problems increase as one or 
both efficacy levels approach a boundary value (i.e. as these 
approach either 0% or 100%), for the mathematical reasons 
described below.

Estimation of probabilities in a risk difference model 
using binomial regression
Consider the following generalized linear model (GLM):

             g(u)=α+β1X1+β2X2 +………..+βkXk                                      (1)
	
where g(u) is a link function identifying a function of the 
mean that is a linear function of the covariates;

X1, X2, ………., Xk form a set of k explanatory variables such as 
age, sex, location, etc.

Using an identity link with a response on a continuous 
scale in the above GLM model would yield a multiple linear 
regression model.

When the outcome is binary, u (often alternatively repre-
sented as π) in this model is the probability of observing a 
specific category of the binary outcome. The GLM with binary 
outcome and identity link reduces to:

                 g(u) = π=α+β1X1+β2X2 + ……….. +βkXk                    (2)

Because the expression α+β1X1+β2X2 + ……….. +βkXk is unbounded, 
the estimate of π is a linear function of the explanatory vari-
ables and can thus yield estimates of outcome probabilities 
that are outside the valid range of 0 to 1.

Let us now reconsider equation (2). If X1 is a binary expo-
sure (0 or 1) denoting the treatment / intervention to which 
an individual is randomized in a clinical trial, the estimate of 
the adjusted risk difference (RD) becomes:
  
                                   RD = 1π̂ - 0π̂                                                      (3)

Substituting from equation (1) gives:

RD=[(a b1*1+b2X2+ ……+bkXk)–(a+b1*0+b2X2+ ……..+bkXk)] (4a) 

where a and bi are estimates of α and βi respectively.
When, as occurs in most conventional clinical trials, there 

are only two treatments this reduces to:
                                           RD = b1                                                    (4b)
For a linear regression of yi on xi, b1 is given by:
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For a binary outcome and binary exposure, equation (5a) 
reduces to 

                                            RD = 01 ˆˆ ππ −                                           (5b)

which is exactly the same as the RD estimated by a binomial 
regression [2].

Cheung shows that using the Huber-White robust estimate 
of variance for the OLS RD gives the same variance as that 
provided by the maximum likelihood binomial regression. The 
Huber-White estimate of variance in matrix form is given as:
 

Where X is the design matrix with xi as the ith row of the matrix;
 

 is the residual bxy ii − ;
 is the vector of OLS estimates.

 
The OLS estimate of the risk difference is just b1. In contrast to 
the estimation of probabilities, this has less stringent boundary 
constraints suggesting that, if the interest is in estimating the 
risk difference rather than the individual risks (probabilities) 
themselves, estimates of the risk difference based on the 
above linear model would be valid.

Cheung demonstrated both algebraically and using simula-
tions that Ordinary Least Squares estimation methods with 
Huber White standard errors are valid for the estimation of 
risk differences. This method also avoids the non-convergence 
problems that can be experienced when using a binomial 
regression model with an identity link function [2]. Cheung’s 
modified least squares method is a simple method with 
appealing properties that can be applied in many standard 
software packages.

Deddens and Petersen [4] proposed the Copy method to 
address the problem of non-convergence when estimating 
risk ratios with the log-binomial model using Maximum Likeli-
hood Estimation (MLE). Non-convergence usually occurs when 
the effect estimates are near the boundary of the parameter 
space (when either or both of the risk estimates is close to 
0% or 100%, the risk ratio itself is either close to zero or ap-
proaching infinity). As its name suggests, in this approach 
multiple copies of the dataset are added to the original set. 
For a risk ratio, the Copy method involves calculating MLEs 
using a log-binomial model on an expanded version of the 
data set that contains K-1 copies of the original dataset plus 
one copy of the original dataset in which the values of the 
binary outcome variable are reversed (the 1’s (successes) are 
all changed to 0’s (fails) and the 0’s (fails) are all changed to 

1’s (successes)). For a log-binomial model, if the total number 
of dataset copies, K, is finite, the estimate is an MLE for the 

“copied” dataset [5]. When the binomial regression model is 
applied to this modified data set, the model converges and 
approximate maximum likelihood estimates of the risk ratio 
are obtained [4-6].

Petersen and Deddens [5,6] recommend that K should 
be at least 100 (in their paper they used a value of K=1,000). 
The standard error estimates for the MLEs obtained with the 
Copy method are based on K copies so have to be multiplied 
by √(K) to convert them to estimates for the original (single) 
dataset. Mathematically, expanding the original data set in 
the manner required for the copy method is simply equiva-
lent to creating a new data set consisting of one copy of the 
original data set, having a weight of K-1, and one copy of the 
original data set with the outcome values reversed, having 
a weight of one. Lumley [7] showed that use of the weights 
(K-1)/K and 1/K for the original outcome and the reversed 
outcome datasets respectively eliminates the need to adjust 
the standard error [7].

A number of methods have been suggested for estimating 
(adjusted) risk differences. Early methods were based either 
on simple formulas derived from odds ratios (Greenland and 
Holland [8]) or on generalized linear models (Wacholder [9]). 
Later methods include a modified Poisson regression model 
fitted using the software package SAS [10]; this involves 
some very simple and straightforward coding but as SAS is 
expensive it is often not accessible by many researchers, and 
there are well documented situations in which this model 
fails to converge [2,11].

Another approach proposed for calculating model-adjusted 
risk difference estimates uses mean marginal predictions 
from a logistic regression model ([11]). This model can be 
fitted with the SUDAAN software package which is capable 
of handling complex data; algorithms for fitting this model 
are also available for software packages such as SPSS and 
Stata but again the cost of these may be prohibitive for 
some researchers. Almost certainly, this model can be fitted 
using the free software package R;, however, although R is 
perfectly capable of handling complex statistical analyses, 
we note that Stata/SPSS users frequently fail to migrate 
to R even after several attempts due to the steep learning 
curve involved. In addition, Williamson, Eliasziw and Fick 
[12] experienced convergence problems with this and less 
standard models in all of the software packages they used, 
including both R and Stata. Even the powerful SAS software 
package sometimes failed to converge for the log-binomial 
model [12,13], and convergence failed with Stata due to the 
iterations going to a wrong place and then being unable to 
return to the parameter space.

It is acknowledged that several methods have been pro-
posed to tackle the problem of non-convergence. As most of 
these focus on risk ratio estimation with only a few attempt-
ing to tackle this problem in the context of risk difference 
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estimation, however, we agree with Williamson [12] that, 
despite the increasing volume of research being published 
attempting to deal with non-convergence in log-binomial 
models, this problem still exists, especially when estimating 
risk differences. There have been recent extensive develop-
ments in software packages such as SAS, Stata and SUDAAN 
attempting to resolve problems of non-convergence. The 
most attractive and promising of these appear to be in R, for 
example fitting Additive Binomial Regression Models with the 
blm algorithm, fitting the binary regression model using the 
glm2 package, and fitting the Poisson model with identity 
link and robust standard errors through the glm algorithm.

The Binomial linear model (BLM) is defined as follows:
Let Y be a binary random variable. Under the binomial 

linear model (BLM), the probability of an outcome is a linear 
function of a covariates x, is: 

  P(Y=1| x)=xTβ

where Y=1 if the outcome is observed and 0 otherwise [14]. Each 
of the estimated coefficients of β is the adjusted risk difference as-
sociated with a unit increase in the corresponding covariate [14]. 
      Although Cheung’s modified OLS and BLM appeared to be 
possible solutions to the problem of model non-convergence, 
we could find no documented evidence in the literature on 
whether or not the copy method can be applied to overcome 
non-convergence when fitting a binomial regression model 
using the identity link function to obtain risk differences. 
Thus, to address this, we used simulation methods to assess 
the performance of the copy method when applied to risk 
difference modeling in situations where the original binomial 
model fails to converge, comparing its performance to four 
alternatives: the established Cheung’s modified OLS method, 
the Additive Binomial Regression Model output with the blm 
package, the binary regression model fitted via glm2 pack-
age in R, and the Poisson model with identity link and robust 
standard errors fitted via glm in R.

Methods
In order to simulate covariate data that reflected a real life 
situation, parameter values were derived from a malaria drug 
efficacy study conducted in Malawi between 2003 and 2006 
[15]. The covariates of interest were hemoglobin (Hb), age and 
weight (wt) because these are likely to be associated with both 
treatment and outcome, consequently there may be need to 
adjust for them when estimating treatment effect. That is, they 
are potential confounders. Outcome data were simulated for 
three different scenarios using Bernoulli distributions: (i) with 
an efficacy level of 0.85 (85%) for group A and 0.60 (60%) for 
group B, a true absolute efficacy difference of 0.25 (25%); (ii) 
an efficacy level of 0.90 (90%) for group A and 0.95 (95%) for 
group B; and (iii) an efficacy level of 0.98 (98%) for group A 
and 0.95 (95%) for group B. The aim of considering these dif-
ferent efficacy levels was to allow for generalizability of the 

findings across a range of outcome scenarios.

Parameter values for simulation of covariates and the 
assessment criteria
The simulations were performed using the Stata 13 software. 
For each scenario 5,000 simulated datasets were used. The 
covariates in each model were hemoglobin (Hb), age and 
weight. Treatment group was included as a factor.

The matrices of parameters for simulating the baseline 
covariates were as follows:

where: X is a vector of the three covariates (measured on a 
logarithmic scale for age and wt but using the original scale 
units for hemoglobin (Hb));

μ is a vector of the mean values for log(age), Hb; log(weight) 
respectively.

The outcome was simulated as a binary variable with the 
desired success rates in each group. Models involving treat-
ment group as a factor and age, Hb and weight as covariates 
were fitted under the following strategies: 

1. Binomial regression on the original dataset.
2. The copy method with K values ranging between 10 
    and 100,000.
3. Cheung’s modified OLS method.
4. The binary regression model fitted via glm2 package in R.
5. The Poisson model with identity link and robust standard 
     errors fitted via glm package in R software.
6. The Additive Binomial Regression Model fitted via the 
     blm package in R software.

The following statistics were obtained from each of these 
analyses: the percentage of simulated datasets for which the 
model fitting converged, the degree of bias in the MLEs of the 
true efficacy difference and the average (mean) 95% lower and 
upper limits of the confidence intervals statistical coverage.

Results
Simulation results
Standard binomial regression model
In all three of the simulated scenarios, convergence problems 
were encountered when the binomial regression model 
was fitted (Table 1). The problem worsened as efficacy rates 
approached a boundary value. Even when neither rate was 
near a boundary, approximately 5% of the models failed to 
converge. When both efficacy rates were at least 95%, however, 
model fitting failed to converge for over 60% of the simulated 
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datasets. When convergence did occur, the estimates were 
biased for each of the scenarios investigated. Coverage was 
unacceptably low, being just under 90% for the scenario 
involving 60% and 85%efficacy rates and below 40% for the 
scenario where both efficacy levels were close to 100%.
 
Cheung’s modified OLS method and binary regression 
model fitted via glm2 in R
The Cheung’s modified OLS approach and the binary regres-
sion model fitted using the glm2 algorithm in R performed 
consistently well across the range of scenarios considered in 
terms of convergence rates and bias (Tables 2 and 3). There 
was 100% convergence and the mean bias was zero for all 
three assessed scenarios. The coverage was high being around 
95% for all assessed scenarios for the OLS approach while the 
binary regression model fitted using glm2 was conservatively 

too high being 100% for all the scenarios being investigated.

Poisson model with identity link and robust standard 
errors fitted via glm in R
The Poisson model with identity link and robust standard er-
rors fitted using the glm algorithm in R also achieved 100% 
convergence but experience some, arguably negligible, bias 
in the estimated RD values (Table 4). The coverage was too 
high being 100% for all the scenarios that we considered.

Additive Binomial Regression Model fitted via blm in R
The Additive Binomial Regression Model fitted using the blm 
algorithm in R software experienced some non-convergence 
but in only a few simulated sets. The convergence rates were 
above 98%. Some (negligible) bias was observed (Table 5). The 
Statistical coverage was very variable and to high for some 

Efficacy rates  
(%)

True
RD

Converged 
N (%)

Estimated 
RD (SE)

95% CI* Coverage (%) Bias
LL           UL

85 vs 60 0.250 4755 (95.1) 0.240 (0.060) 0.122 0.358 0.896 -0.010
90 vs 95 0.050 3550 (71.0) 0.037 (0.036) -0.034 0.108 0.162 -0.013
98 vs 95 0.030 1987 (39.7) 0.036 (0.025) -0.013 0.085 0.360 +0.006

Table 1. Percentage convergence, efficiency, coverage and bias for the binomial model for each scenario.

Table 2. Percentage convergence, efficiency, coverage and bias for Cheung’s OLS method of RD estimation 
for each scenario.

Table 3. Percentage convergence, efficiency, coverage and bias for binary regression model using glm2 
algorithm in R.

Table 4. Percentage convergence, efficiency, coverage and bias for Poisson model with identity link and 
robust standard errors using glm algorithm in R.

amean SE over 5000 simulations, *mean lower and upper CIs over 5000 datasets

amean SE over 5000 simulations, *mean lower and upper CIs over 5000 datasets

amean SE over 5000 simulations, *mean lower and upper CIs over 5000 datasets

amean SE over 5000 simulations, *mean lower and upper CIs over 5000 datasets

Efficacy rates  
(%)

True 
RD

Converged 
N (%)

RD (SE)a 95% CI* Coverage (%) Bias
LL           UL

85 vs  60 0.250 5000 (100) 0.250 (0.061) 0.130 0.369 0.950 0.000
90 vs  95 0.050 5000 (100) 0.050 (0.037) -0.022 0.122 0.945 0.000
98 vs 95 0.030 5000 (100) 0.030 (0.026) -0.021 0.079 0.950 0.000

Efficacy rates 
(%)

True 
RD

Converged 
N (%)

RD (SE)a 95% CI* Coverage Bias
LL           UL

85 vs 60 0.250 5000 (100) 0.250 (0.061) 0.130 0.370 100 0.000
90 vs 95 0.050 5000 (100) 0.050 (0.037) -0.023 0.123 100 0.000
98 vs 95 0.030 5000 (100) 0.030 (0.026) -0.021 0.081 100 0.000

85 vs  60 0.250 5000 (100) 0.253 (0.064) 0.127 0.378  100 +0.003
90 vs  95 0.050 5000 (100) 0.051 (0.038) -0.024 0.125  100 +0.001
98 vs 95 0.030 5000 (100) 0.030 (0.026) -0.021 0.082  100 0.000

Efficacy rates 
(%)

True 
RD

Converged 
N (%)

RD (SE)a 95% CI* Coverage Bias
LL           UL
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scenarios. The coverage was 91.8% for the 98% vs 95% efficacy 
rates; 98.5% for the 95% vs 90% efficacy scenarios and 100% 
for the 85% vs 60% efficacy scenarios.

Simulation results: Deddens’ Copy method
For each simulated scenario, the percentage of non-convergent 
models was least when the number of copies (K) used was 10. 
When 20 or more copies were used, the percentage of non-
convergent models increased (Figures 1-3) and continued to 
do so consistently as K was increased. However, for all three 
scenarios, the non-convergence rates were better than the 
rate obtained using no copies for up to at least 100 copies, 
although beyond 5,000 copies the non-convergence rates 
were worse for all the scenarios. In addition, some datasets 
that converged when analyzed conventionally failed to con-
verge when the copy method was adopted.

Bias was observed irrespective of the number of copies 
used. With just 10 copies, risk difference was underestimated 
in all three scenarios. Tables of the parameter estimates are 
presented in detail in Supplementary Tables S1-S3.

Discussion
The Copy method did not provide a remedy to the non-conver-

gence problem when modeling risk differences. These findings 
agree with those reported by Petersen and Deddens [5] and 
also by Chen, Shi and Qian [16] in a discussion of their finding 
that non-convergence occasionally occurs for log-binomial 
models even if the COPY method is applied. So, while the 
Copy method has been found to be effective in solving non-
convergence problems when using log-binomial models to 
estimate risk ratios [4-6], our findings demonstrate clearly that 
the method is not appropriate for modeling risk differences. 
    In all of the simulation scenarios we considered, 100% con-
vergence was often achieved when around 10 copies were used 
but this was found to be the number of copies at which the 
estimates for the risk difference were most biased. Increasing 
the number of copies beyond 10 simply increased the likeli-
hood of non-convergence. The most likely explanation for this 
is that, although close to 100% convergence can be achieved 
with K=10, the effect of the reversed copy is not diluted suf-
ficiently to provide unbiased estimates of risk differences. 
     Perhaps surprisingly at first glance, convergence failure 
rates became more common when the number of copies 
was increased beyond 5000, but this is due to the fact that 
increasing K yields an outcome distribution similar to the 
original in which the binomial model failed, thus resulting 

Efficacy rates 
(%)

True 
RD

Converged 
N (%)

RD (SE)a 95% CI* Coverage(%) Bias
LL           UL

85 vs 60 0.250 4999 (99.9) 0.250 (0.067) 0.120 0.379 100.0 0.000
90 vs 95 0.050 4985 (99.7) 0.047 (0.026) -0.003 0.097 98.5 -0.003
98 vs 95 0.030 4945 (98.9) 0.026 (0.013) -0.000 0.051 91.8 -0.004

Table 5. Percentage convergence, efficiency, coverage and bias for Additive Binomial 
Regression Models using blm algorithm in R.

amean SE over 5000 simulations, *mean lower and upper CIs over 5000 datasets

Figure 1. Percentage Convergence and (absolute) Bias for selected Numbers of Copies (85% vs. 60%).
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in the model failing again. Hence the finding that datasets 
that did not converge with the original binomial model also 
tended to be more likely to fail to converge with the Copy 
method, particularly when large numbers of copies were made.

Some of the datasets that were convergent with the origi-
nal binomial regression model become non-convergent with 
the Copy method. A possible reason for this is that the Copy 
method creates very large datasets. In general, very large and 
very small datasets are both susceptible to non-convergence 
problems [13]. In addition, bias patterns were found to be 

very irregular with increasing number of copies, probably 
because fitted models that converge do not do so at random; 
those models that fail to converge when just a few copies are 
used will also fail to converge when more copies are added. 
This was not explored in any more depth in this paper as our 
primary focus was merely on whether the non-convergence 
problem would be solved or not.

The Cheung’s modified OLS method and the binary re-
gression model fitted using the glm2 algorithm in R appear 
to be the optimum approaches for estimating adjusted risk 

Figure 2. Percentage Convergence and (absolute) Bias for Increasing Numbers of Copies (95% vs. 90%).

Figure 3. Percentage convergence and (absolute) bias for increasing numbers of copies (98% vs. 95%).
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differences. Our findings confirm that both of these methods 
not only converge but also provide unbiased estimates of risk 
differences when standard methods of binomial regression 
fail to converge. Both methods remains robust even when 
several covariates are included in the regression model, mak-
ing them useful for controlling for potential confounders and 
also for identifying independent predictors of outcome when 
modeling risk differences. In addition, the methods yield 
unbiased estimates of risk differences with robust standard 
errors, thus offering clear statistical advantages over the use 
of the binomial regression method when the binomial model 
fails to converge. Efficient standard errors for the modified 
OLS are obtained via Huber-White standard errors. However 
the glm2 binary regression model suffers from too high 
(conservative) statistical coverage that remained at 100% for 
all scenarios. This coverage property puts Cheung’s OLS at a 
statistical property advantage over the glm2 model.

The Poisson model with identity link and robust standard 
errors fitted using the glm algorithm in R also emerged in our 
simulations as a promising method for estimating risk differ-
ences. Model convergence is assured using this approach; 
while some bias can be expected with this method, it is likely 
to be very minimal. Minimal bias risk also occurred when the 
Additive Binomial Regression Model was fitted with the blm 
algorithm in R, but disappointingly a small chance of model 
non-convergence was also identified.

Conclusion
The standard binomial model with an identity link function 
is the method of first choice for estimating risk/efficacy dif-
ferences, provided the model converges. When a model fails 
to converge, this problem can be addressed most efficiently 
using either Cheung’s modified OLS approach or by fitting a 
binary regression model with the glm2 package in R; both of 
these methods converge and provide efficient unbiased esti-
mates of adjusted risk differences. The Cheung’s OLS method 
offers a statistical coverage property over the glm2 approach. 
The Poisson model with identity link and robust standard 
errors fitted using the glm algorithm in R and the Additive 
Binomial Regression Model fitted using the blm algorithm 
in R are possible alternatives as they have 100% and almost 
100% convergence rates respectively, but both produce very 
slightly biased risk difference estimates. In addition the Poisson 
model has too high coverage while the blm approach produces 
variable statistical coverage depending on efficacy scenarios. 
    The Copy method is not a suitable approach for estimating ad-
justed risk differences and is now effectively rendered obsolete 
in the presence of methods such as Cheung’s modified OLS and 
the binary regression model fitted using the glm2 package in R. 
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