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Abstract 
Late stage detection of COVID-19 disease pathogenesis induced by SARS-CoV-2 infection may prove to 
be fatal to the infected patients with the severity increasing, if inhibition of differentiation of hematopoietic 
endothelial progenitor cells, or their sustained deficiency, is not reversed. Antiviral drug treatments of 
such individuals need not necessarily resuscitate from a severe impairment of normal angiogenesis of the 
vascular endothelium. The virus targets the endothelial progenitor cells which co-express the hematopoietic 
stem cell marker CD34 and the angiotensin converting enzyme 2 (ACE2), latter being the host receptor 
for this pathogen. There is not an apparent segregation of CD34 and ACE2 antigens, strongly implicating 
inhibition of differentiation of virus infected progenitor cells. The embattled clinical condition of SARS-
CoV-2 infected patients may well require a dual-mode endothelial progenitor cellular infusion and antiviral 
drug molecular therapies to stage a rapid clinical recovery. Umbilical cord blood derived CD34+ progenitor 
cells are the most optimal for rapid availability, harvesting and infusion into the severely ill infected 
patients, who are most likely to be non-responsive to solely antiviral drug treatments. This is about rapidly 
prepared allogeneic cell infusion therapy and not autologous cell transplantation which is impractical for 
these relatively acute and short-term conditions and treatments of SARS-CoV-2 infections. A combination 
progenitor cell and antiviral drug treatment is suggested for recovery and maintenance of normal 
angiogenesis of infected patients who may otherwise not survive. Hence the concept and its basis discussed 
needs to be urgently advanced to translation stage.
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Hypotheses 
Variations caused by SARS-CoV-2 in levels of disease pathogenesis 
in infected patients from asymptomatic or minor symptoms, to 
severe damage to vascular cells, raises questions on the return 
to normal functioning of the vasculature and recuperation of 
the severely affected physiology of angiogenesis pathways.

The level or stage of the COVID-19 disease at which the patients’  
infection by SARS-CoV-2 is tested to be positive by PCR for existing 
infection, is critical to determine the therapeutic strategy to 
be adopted. If SARS-CoV-2 infection has advanced the virus 

induced disease to injury of the vasculature and its endothelium, 
eliciting an abnormally potent cytokine storm due to the severe 
but acute surge of immune responses, then recovery may need 
the dual administration of exogenous cellular in addition to 
the molecular drug therapies. 

Umbilical cord blood (UCB) derived endothelial progenitor 
cells (EPCs) despite their allogeneic nature are evidenced as 
the most resourceful and generally safest for infusion into the 
patients [1], in this instance battling the severity of SARS-CoV-2 
infection. However, it is important to distinguish between our 

CrossMark
← Click for updates

http://www.hoajonline.com/stemcells
http://www.hoajonline.com
mailto:kokaprasad005%40gmail.com?subject=
http://creativecommons.org/licenses/by/3.0
http://crossmark.crossref.org/dialog/?doi=10.7243/2054-717X-7-1&domain=pdf&date_stamp=2020-10-05


Koka et al. Stem Cell Biology and Research 2020, 
http://www.hoajonline.com/journals/pdf/2054-717X-7-1.pdf

2

doi: 10.7243/2054-717X-7-1

suggested intravenous (IV) cell infusion for recovery and 
homeostasis of angiogenesis than undertake the impractical 
cell transplantation, in such a critical clinical scenario. Infusion 
can be performed following rapid cell preparation including 
any pre-IV HLA matching on a few UCB derived cells [1].

Herein a combination cellular and molecular therapy that 
has all the prerequisites for rapid clinical administration to the 
virus infected patients struggling between life and death is 
proposed. Figure 1 depicts the desirable therapeutic approach 
if the infected patient is already at the disease stage where 
she needs ventilator support to remain stable and for recovery.

Lung microvascular endothelial progenitor cells (EPCs) play 
a pivotal role in maintaining the life of an individual [2]. In our 
Figure 1, UCB derived endothelial progenitor cells expressing 
the characteristic CD34 antigen of the hematopoietic lineage 
(HEPC) [1,3], may come to the rescue of replenishing the 
severely depleted endothelial cells of the vasculature of the 
critically ill and even non-responsive patients, arising from 
SARS-CoV-2 infection. However, such human umbilical cord 
hematopoietic endothelial progenitor cell (hUCHEPC) infusion 
still would need an anticipated antiviral drug treatment for 
containment of the virus replication, to aid in the HEPC/EPC 
homeostasis and stabilization for reversal of the otherwise 
aggravated patients’ physiological condition.

Inhibitors of this viral RNA synthesis (from its +ssRNA 

strand), such as remdesivir and ED-1931/ED-2801, are very 
much in clinical trials with much anticipated efficacy thru’ 
aborted viral replication, due to the incorporated modified 
nucleotides [4,5]. Viral protease inhibitors of SARS-CoV-2 serine 
protease are also being developed [6-9]. Therefore, for the 
infected individuals who become severely ill from damaged 
vasculature, in order to re-attain stable vascularization (neo-
vascularization), hUCHEPC may be the most plausible therapy 
to be adopted [10-12], aided by the antiviral drugs [4-9], to 
achieve and sustain the normal angiogenesis recovery. 

Binding of the SARS virus spike (S) protein to the endothelial 
cell angiotensin converting enzyme-2 (ACE2) [13], as it also 
happens with strong affinity to SARS-CoV-2 in particular, is 
physiologically deleterious to the host HEPC/EPC self-renewal 
and differentiation into mature cells of different types of 
the human vasculature [14-16]. The steady state disruption 
between the HEPC/EPC in effect during the virus infection 
also necessitates the antiviral drug induced containment 
and clinically eventual cessation of virus replication to maintain 
functioning levels of endothelial progenitor cells. Else, resurgence 
and function of the HEPC/EPC prevail during decreasing viral 
loads not requiring the cellular therapy component, presum-
ably in the virus infected asymptomatic individuals, or patients 
that are responsive to antiviral drugs without clinical advance-
ment to pneumonia and severe lung-vascular cell injury. 

Figure 1. Schematic showing the proposed endothelial progenitor cell and antiviral drug dual approach therapies to 
simultaneously replenish the lost cells and contain the virus replication, for rejuvenation of the vasculature, in late stage 
pathogenesis of SARS-CoV-2 infected patients. Note: The virus and cell are taken from Google online search.
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Despite the common haematopoietic lineage association of the 
endothelial progenitor cells that also express the characteristic 
hematopoietic cell surface CD34 antigen marker [1,17], onset 
of stage specific divergent lineage commitment of HEPC and 
EPC (CD34+) lead them to differentiate separately into immune 
and vascular cells respectively. HEPC are in greater proximity to 
being stromal than EPC. Previously, we have performed engraft-
ments and reconstitution of CD34+ progenitor cells, isolated 
rapidly by AutoMacs, in human stromal microenvironment 
in SCID-hu animals [18,19]. In the context of EPC, CD34 expres-
sion lends credence to the stromal proximity and coexistence 
between HEPC and EPC populations which are discriminated 
only through their lineage differentiation into cell types 
categorized by their functions designated prior to HEPC/EPC 

“split”. Lung vascular EPC microenvironment [2] preservation 
is essential for the circulation of vascular cells which are the 
primary target of this virus and interruption or failure of this 
function is potentially lethal to the infected patients. UCB de-
rived CD34+ H/EPCs [19] for the cellular therapy can be used 
for regeneration of the severely depleted vascular progenitor 
cells in the SARS-CoV-2 infected patients. 

Moreover, purified CD34+ cells, even from peripheral 
blood are significantly more preventative of graft-versus-host 
disease (GVHD) in allogeneic transplantations [20]. Further, 
UCB derived CD34+ cells carry the potential to confer greater 
survival incidence and ward off GVHD related mortality in 
transplantation recipients [21]. Thus, when GVHD due to CD34+ 
cell transplantation is at a minimal in causing patient mortality, 
a transient readily preparative and administrable CD34+ cell in-
fusion therapy that we have proposed is not expected to confer 
a burden on the immune system of the COVID-19 patients. 
Rather any such presumably mild reaction [20,21]could be 
even synergistically beneficial in repressing or lowering any 
prevailing clinical cytokine storm condition in these SARS-
CoV-2 infected patients, in conjunction with some of the other 
prescribed and adopted treatments.

Interestingly, regions of the S/pike protein of SARS-CoV-2 
cause cytokine storm induced thrombocytopenia, is similar 
to that effected by HIV-1 V3 loop determinants [22,23]. The 
commonality of virus-induced depletion of the megakaryocyte 
lineage CD41+ cells [24], may well strengthen the involvement 
of microRNA in the inhibition of differentiation of progenitor 
cells [25], H/EPC, causing insufficient supply of cells required 
to be maintained in normal blood circulation and in the case 
of both these viruses, for platelet formation and levels. 

Our recent report wherein differential regulation between 
microRNAs, miR-15a and miR-24, is implicated in HIV-1 induced 
inhibition of differentiation of CD34+ hematopoietic progenitor 
cells occurs, purportedly via HOX, and thus ensue different 
lineage cytopenias [25]. Similarly, miRNA implicated phenomena 
are involved in EPC differentiation and these cells’ regulatory 
signals on miR-141-3p (via Hesr1) and miR-126 (via VEGFR2) 
in destabilization of proteins controlling prevention of lung 
injury [26], and type 2 diabetes [27], respectively. Such findings 

compel us to anticipate microRNAs to become the focus 
of consideration for drug therapies to address depletion of 
progenitor cells. Further, microRNAs may lead to cell-free 
therapies possibly encapsulated in bio-scaffolds. Targeting or 
using microRNAs may further delineate strategies to tackle 
the virus pathogen or its deleterious clinical conditions. 

Sustained maintenance of stromal microenvironments in the 
human vasculature [28] post-therapy, as depicted in Figure 1, 
pertaining to the homeostasis between HEPC and EPC balance 
of the cell surface antigens, such as the inevitable CD34 [26] 
marker expression in this regard, is of utmost underlying 
physiological necessity. The homeostasis between HEPC and 
EPC as we depicted in Figure 1, seems to be driven by the 
co-expression of CD133 and CD34 on the EPC, with retention 
of the hematopoietic origins, for a sustained replenishment 
of the double-positive (CD34+CD133+) EPC that participates 
in the angiogenesis or neovascularization [1]. Whether a 
selection enriched for the multi-potent ALDH+CD133+Lin- 
phenotype cells’ repopulating potential as in in vivo [29], of 
these CD34+ subset cells when derived from the UCB, would 
be more efficacious for the H/EPC+ therapy for severe acute 
SARS-CoV-2 infections, needs to be determined. The vascular 
endothelium may have been depleted of the repopulation sup-
porting stromal microenvironment in the SARS-CoV-2 infected 
patients but then again, this ALDH+CD133+Lin-/CD34+ 
cell population enrichment [29] may very well be the cofactor 
in the midst of the whole CD34+ cells together providing the 
cellular microenvironment needed for rapid and irreversible 
neovascularization. These co-populating progenitor stem cell 
subset phenotypic requirements but led by the focus and ease 
to collect large numbers of the CD34+ cells from different UCB 
samples, will be expected to counter and recover the SARS-
CoV-2 induced damage to the vasculature. This will address 
the well-being of the affected patients in general, and SARS-
CoV-2 infected patients in particular, for attainment of the 
elimination of the entire and last vestiges of infection and 
the virus induced pathogenesis.

Thus we hope that basic science and clinical researchers may 
follow up on these suggested lines of therapeutic treatment 
to evaluate the feasibility and efficacy in severely ill COVID-19 
patients to stage a recovery, not without a sense of urgency.

Furthermore, since SARS-CoV-2 infections also cause 
dysfunction of disparate human organs including the lungs, heart, 
brain, kidney, intestine, etc., disease modeling by employing 
the human induced pluripotent stem cells (hiPSC) derived 
organoidmodel systems [30-40], lead the path towards the 
mechanisms underlying organ failures due to SARS-CoV-2 
infections. Such experimental investigations using hiPSC 
derived organoid models could well generate molecular drug 
therapies to treat preemptive tissue damage by SARS-CoV-2 
infections.
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